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Abstract— Petri nets are a formal, graphical and executable 
modeling technique for the specification and analysis of 
concurrent systems and have been widely applied in computer 
science and many other engineering disciplines. Low level Petri 
nets are simple and useful for modeling control flows; however, 
they are not powerful to define data and system functionality. 
High level Petri nets were developed to support data and 
functionality definitions [1]. To support the practical applications 
of Petri nets formalism, tools for designing and executing Petri 
nets are necessary. Although there are many existing tools for 
supporting low level Petri nets [5], few tools are available for high 
level Petri nets. There is especially a lack of tools to support high 
level Petri net notation proposed in the international standard 
[1]. In this paper, we present a tool, called PIPE+*, to support a 
subset of high level Petri nets proposed in [1]. PIPE+ is built 
upon an existing low level Petri net tool PIPE (Platform 
Independent Petri Net Editor) [2]. This paper describes the 
functionality of PIPE+ as well as illustrates the process of 
extending PIPE, which provides helpful insights for others to 
create Petri net tools suit their own needs.  Furthermore, PIPE+ 
is an open source tool and thus is available for various 
enhancements from worldwide research community. 
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I.  INTRODUCTION  

Petri nets have been used to describe a wide range of 
systems since their invention in 1962 [3]. They are a graphical 
and formal method for describing and studying concurrent and 
distributed systems [4].  Low level Petri nets are suitable to 
model control flows and are applicable to work flow systems; 
however are not adequate to describe complex systems. High 
level Petri nets were developed to support the definition of data 
and functional processing [1]. To support the practical 
applications of Petri net formalism, tools for creating and 
executing Petri nets are needed. In [5], a Petri net tool database 
listed the tools developed in the past several decades. 
Unfortunately, many of the tools described in the database as 
well as in literature are no longer maintained or available and 
few of them support high level Petri nets, especially the high 
level Petri net definitions and notations proposed in the 2001 
international standard [1].  Table 1 lists representative tools 
supporting some forms of high level Petri nets. 

The high level Petri nets proposed in the international 
standards draws concepts from predicate transition nets, 
colored Petri nets, and algebraic Petri nets; and provides 
abstract and general definitions and notions. It is desirable to 

create a tool for editing and simulating the high level Petri nets; 
unfortunately no such tool exists yet. A realistic attempt is to 
develop a tool to support a restricted and concrete realization of 
high level Petri nets.  The most critical components of the high 
level Petri net definitions are the net annotations with regard to 
transitions, which are algebraic terms of Boolean type. In [15], 
we viewed first order logic formulas as the algebraic terms 
associated with transitions and thus adopted the predicate 
transition net view as a concrete realization of high level Petri 
nets. 

Name High level Net 
Type 

Graphical 
Editor 

Simulator 

AlPiNA Algebraic Petri 
Nets 

Yes No 

CoopnBuilder CO-OPN 
language 

Yes No 

CPN Tools Colored Petri 
Nets 

Yes Yes 

HISIm Hybrid Petri 
Nets 

Yes Yes 

Renew Object Oriented 
Petri nets 

Yes Yes 

PIPE+ High level Petri 
nets 

Yes Yes 

Table 1    A List of High Level Petri net Tools 

It requires tremendous effort to build a high level Petri net 
tool from scratch and is especially difficult to assure the quality 
of the initial design. It is desirable to leverage successful results 
and extend mature and existing tools. It is of tremendous value 
to build upon open source tools so that the resulting new tool 
can be shared and improved by the worldwide research 
community. PIPE+* is a tool to support high level Petri nets 
where transition conditions are defined in terms of first order 
logic formulas [14]. PIPE+ extends a well developed open 
source low level Petri net tool called PIPE (Platform 
Independent Petri net Editor) [6]. Furthermore PIPE+ retains 
the original low level Petri net editing and executing features, 
which allows user to choose appropriate net levels to model 
target systems.  

In this paper, we first briefly review the background of 
basic and high level Petri net concepts. We introduce the 
chosen low level Petri net tool PIPE that PIPE+ built on, and 
then present implementation details of the extension according 
to the high level Petri net concepts. We discuss limitations and 
applications of the tool, and our contributions and perspectives. 



 

II. PETRI NETS AND HIGH LEVEL PETRI NETS  

The Petri net structure consists of a finite set of places 
(drawn as circles), a finite set of transitions (drawn as bars), a 
finite set of directed arcs (drawn as arrows), and a set of tokens 
(drawn as dots) to define an initial marking. The arcs connect 
from a place to a transition or vice versa, never between places 
or between transitions. The places from which an arc runs to a 
transition are called the input places of the transition; the places 
to which arcs run from a transition are called the output places 
of the transition. The places can contain multiple tokens and 
thus are of multi set type (or bag). A distribution of tokens over 
the places of a net is called a marking. A transition may fire 
whenever there are enough tokens in all input places. 

According to the international standard [1], a high level 
Petri net graph comprises: a net graph, place types, place 
marking, arc annotations, transition condition and declarations. 
The net graph is the net structure; place types are non-empty 
sets, restrict the data structure of tokens in the place; place 
markings are collection of elements (data items) associated 
with places, called tokens; arc annotations are inscribed with 
expressions which may comprise constants variables (e.g., x, y) 
and function images (e.g., f(x)); transition conditions are 
Boolean expressions inscribed in; declarations comprising 
definitions of place types, typing of variables and function 
definitions. For net execution, the most important is transition 
enabling. Enabling a transition involves the marking of its input 
places. When an enabled transition occurs, the enabling tokens 
from input place's are subtracted and the resulting tokens of the 
transition Boolean expression are added to the output places. 

III.  AN OVERVIEW OF PIPE 

PIPE [2] is a Platform Independent Petri net Editor to edit, 
animate and analyze low level Petri nets, which has clear 
design and incorporates the latest XML Petri net standards of 
storing format, the Petri Net Markup Language (PNML). It is 
implemented in Java and can be logically divided into three 
major components [6], shown in Figure 1: the graphical user 
interface (GUI), a layer managing the interactions between the 
GUI and the modules (DataLayer), and analysis modules.  

 

Figure 1   Package Diagram for PIPE 

A. Graphical User Interface  

PIPE’s graphical user interface is developed using Java 
Swing API as it provides full GUI functionalities and mimics 
the platform it runs on. Besides, as PIPE is a cross platform 
application this was deemed useful for providing a native look 
and feel. The GUI component includes GUIFrame, GUIView 

and classes such as action, handler and widgets supporting 
Swing APIs. From a user perspective, there are two major parts: 
Editor and Simulator. 

• Editor: Users are able to edit a low level Petri net by 
clicking and drawing Petri net graphical elements 
through the menu bar, toolbar. On the toolbar, it lists 
all the Petri net element thumbnails, such as place, 
transition and arc, which can be selected and added to 
the white canvas (tabbed pane) of the editor. Besides, 
these added elements’ annotations and attributes can be 
defined by selecting one of the elements and pop up an 
editing dialog box. 

• Simulator: There is a switcher button between editor 
mode and simulation mode. Using the simulator, a user 
is able to fire a random transition or fire a number of 
transitions randomly selected among enabled ones. The 
simulation process includes subtracting tokens from 
input places and adding them to output places while 
firing a transition. Besides, the animation history is 
displayed on the left bottom of the interface frame by 
listing transition’s label orderly. 

B. Internal Architecture of PIPE—The DataLayer  

 

Figure 2 The Hierarchy of PetriNetOjbect Classes 
 

The core component of PIPE is the data layer, which 
maintains states and contains all the classes used to represent a 
Petri net. Figure 2 shows the hierarchy of important Petri net 
object classes [6], including Arc, Place and Transition classes 
inherited from PetriNetObject because they have common 
variables and methods, such as id, name, location, etc. 

In the data layer component, each Petri net is encapsulated 
by an instance of the DataLayer class, which contains all the 
Petri net objects stored in ArrayLists enabling the easy addition 
of new objects. It contains not only methods to access all its 
internal objects and to return its internal lists in the form of 
object Arrays, but also methods to calculate the current markup, 
initial markup, forwards incidence matrix, backwards incidence 
matrix, combined incidence matrix and enabled transitions. 



 

Besides data layer, PIPE has analysis module to do analysis 
and conclusions on the properties of Petri net model, such as 
boundedness, liveness, reachable markings and so on. 

C. Saving and Loading  

PIPE is capable of saving and loading nets and writing the 
Petri net data layer into a Petri net Markup Language (PNML). 
An Extensible Stylesheet Language Transformation (XSLT) is 
used to transform it between PNML and XML files. 

IV. PIPE+ 

A. Overview of the Extension  

Similar to PIPE, PIPE+ is also an editor and a simulator. 
The editor is to model a system visually through a graphical 
interface. The goal is to utilize all the benefits that a high level 
Petri net provided with convenience. The details are presented 
below according to the high level Petri net concept’s six 
elements in reference [1]. The simulator is no longer a simple 
black dot token animation game but to manage the movement 
of meaningful data. We developed a mandatory compiler with 
an interpreter to process token data inside transition conditions, 
which are defined using restricted first-order logic. Besides, a 
simulation algorithm is applied to ensure its fairness and 
improve its performance. 

B. A Net Graph 

Since the graphical elements of a high level Petri net are the 
same as low level ones, the PIPE’s graphical editor is retained.  

C. Place Type and Place Marking 

The main difference between high level and low level Petri 
nets is that tokens are no longer black dots, but complex 
structured data. Place types are non-empty sets that restrict the 
data structure of tokens in the places. The data structure is an 
array of basic types, such as integer and string, and defined by 
user. For example, assuming a log in user account as a token 
has two elements, username and password, which are 
represented by two basic data types, string and integer. In a 
high level Petri net's place, a place data type is inscribed to 
restrict the data structure of tokens. In another way, the data 
type of tokens can be added into the place has been already 
defined beforehand.  

To implement the concept that tokens with data structure, a 
data storage system is needed. Based on PIPE, the data layer 
package is modified by adding three classes: DataType, Token, 
abToken (Figure 3). 

• DataType: The main data structure in class DataType 
is a Vector storing a list of basic types' name, which is 
used to show what data structure the token or place 
holds. The data structure consists of an array of basic 
types, such as string, integer, etc. For our tool, basic 
types are limited to strings and integers for the 
simplicity but are adequate for most of applications. 
For the convenience of extension on basic types, we 
introduce a new structure BasicType to data layer. The 
structure BasicType (see Figure 4) includes a flag data 
field "Kind" to indicate which type it is (in PIPE+, 0 
represents integer, 1 represents string). Space is 
allocated to both integer and string since it is 

undecided before the “Kind” is defined. Further 
extension on basic types needs to enhance the class 
BasicType by allocating extra space and redefine 
“Kind”. 

 

 

Figure 3 Extensions on DataLayer for PIPE+ 
 

• Token: Class Token is added to the data layer to 
maintain data value. The important field is a Vector 
storing a list of instances of value with type of the 
BasicType, see Figure 4. Token is a basic data storage 
element in the places and its value is calculated by the 
transitions. The simulation process is fetching data 
value from the token’s BasicType and fill the 
calculated result value to another token’s BasicType. 

• Abstract Token: Since first-order logic covers 
quantification, the whole collection of tokens in a place 
need to be checked by transition condition expressions. 
For example, if an expression includes “�x � X”, all 
the tokens in “X” needs to be checked to see whether a 
“x” exists, so the whole collection of tokens is fetched 
while checking enabledness of a transition. The tokens 
in this type of place are defined as a power set. A new 
class abToken (abstract token) is added into the data 
layer to store the power set. It has a field storing a list 
of regular tokens with the same data type, so it also has 
a data type to restrict the tokens data structure. We 
flatten the nested power sets by duplicating some fields. 
For example, in a library system, one user may borrow 
a list of books, so that the database (power set) in 
library system is {username, password, 
books_borrowed{book1, book2,...} } is converted into 
{username, password, book1}, {username, password, 
book2}. This design sacrifices the space for the 
convenience of implementation, which can be further 
improved. 



 

 

Figure 4  Structure of Class Token 
 

As a result, the places in PIPE+ stores a list of regular 
tokens or an abstract token that contains a collection of regular 
tokens. Whether the connected transition can fetch a regular 
token or an abstract token depends on the place is a power set 
or not. The user can add, edit and delete tokens from places to 
create a place marking. 

In PIPE+, a place stores tokens by List container, the 
place's capacity is built as unbounded (remember it has nothing 
to do with the number of different tokens that may appear in a 
particular place). However, in the discussion of [7], bounded 
and unbounded places have the same expressive power. A 
bounded place is preferable for the reason of visualization and 
redundancy.  

In PIPE+, copies of token are allowed to store in the same 
place. Since whether the place needs to remove its copies of 
token depends on what the model it is, this can be further 
improved by supporting an option of copy remove. 

D. Transition Conditions and Arc Annotations 

Transition conditions are guards controlling the flowing of 
the tokens. PIPE+ use first-order logic to define transition 
condition formulas, which, syntactically, consists of variables 
and logic operators. Variables in the formula are predicates that 
can be instantiated by value from input tokens. Combined with 
logic operators the formula can be calculated. Semantically, as 
transition is a guard to control token flows, it has to check the 
value of tokens from input places and formulate new tokens 
conform to the output place type, the formula consists of two 
parts: pre-condition and post-condition. However, in PIPE+, 
the user is not supposed to separate the two conditions 
explicitly, because the interpreter can differentiate them by the 
type of variables. 

In PIPE+, arc annotations are variables to assist transition 
expression calculation by mapping token values to expression’s 
predicate variables. Arc variables are restricted to be appeared 
in the connected transition expression’s variables for the 
mapping. Since a transition is connected by input and output 
arcs and arcs are connected to places, the predicate variables in 
the transition expressions are classed into input variables and 
output variables. For example, in Figure 5, a and b are input 
variables while c is output variable.  

In a transition calculation process shown in Figure 5: In 
step (1), each token in the connected place is firstly bounded to 
the connected arc variable; as a pair, {variable, token}, they are 

fetched into a symbol table of the transition (note the pair with 
output variable’s token value is temporarily empty and to be 
filled by the result of the expression calculation). In step (2), 
the input variables in the transition expression can locate token 
value through the pair’s arc variables by looking up symbol 
table. In step (3), after transition expression calculation, the 
output variables are assigned with result value and the symbol 
table’s output variable pairs are filled by the value. In step (4), 
the output pairs’ token are added to the connected output places 
according the arc’s variables. For example, as c is on the output 
arc, c’s token in symbol table [bob] is added to the output place. 

 

Figure 5  An Enabled Transition Formula Calculation 

Process 
 

• Restricted First Order Logic Transition Formula 
Expression: In PIPE+, it is called restricted because the 
grammar we built for the tool has limitations. Since 
each predicate variable has to be instantiated, the user 
cannot use free variable that does not appear in the arc 
annotation, otherwise the calculation result is 
undetermined. Also, it does not support predefined 
function, like f(n), since the meaning of the function 
has to be declared beforehand, which is equivalent to 
define its operations in a single logical sentence by 
using the connecting operator “�”, which simplifies the 
implementation of expression interpreter. However, the 
restricted version of first order logic is still very 
powerful, because it does support complex expressions, 
such as: 

�a � b
 � �c � C��c
1� � �
2�
 � �C� � C � �b� �

             �
a
1�, c
2��

.                                         (1)  

In (1), lower case letters represent regular tokens, 
upper case represent power set; C’ by convention 
represents output variables and also is a  power set 
(upper letters); it further indicates the clause is a post-
condition because output variables at the left side of 
the equation means assignment; c[n] means the nth 
element value in c’s data structure. 

• Parser and Interpreter: Because logical formulas need 
to be parsed and interpreted, we build a compiler with 
a parser and an interpreter for the restricted first order 
logic formula. The parser includes a scanner, which is 
built by a lex file and generated by jflex 1.4.3 [16]. A 
BNF grammar is built in cup file and generated by 
leveraging the tool jcup v11 [17]. Since the transition 



 

formula does not explicitly separate pre and post 
conditions, but only pre-conditions need to be 
calculated when checking whether the transition is 
enabled to fire or not, the interpreter has to differentiate 
pre and post conditions. A trick is found that in the 
post-condition, it usually starts with an output variable 
equals a subformula, for example, in (1),�C� � C �
�b� � �
a
1�, c
2��
  is a post-condition because C� is 
output variable. Therefore in the interpreter, when 
checking a clause with an "=" operator, the left hand 
side of the "=" variable is checked. If it is input 
variable, this clause is a pre-condition and the "=" is 
interpreted as a logic operator equal, which results in a 
Boolean true or false; on the other hand, if it is an 
output variable, the clause becomes a post-condition 
and the operator now is an assignment clause that 
assign the result value of right hand side formula to the 
left hand side output variable. 

• Symbol Table: In PIPE+ each transition maintains a 
temporary symbol table to facilitate the interpreter. It 
does not use one big table for all the transitions, 
because it may cause name conflict and is hard to 
manage.  The symbol table contains a list of elements 
that are structured by a pair of key and object. The pair 
of key and object is obtained from the transition's 
connected arc annotation and place. The reason we 
maintain the pair of key and object instead of key and 
token is because besides regular token type, the key 
may pair with a power set (abstract token type). 
Moreover, the symbol table is initiated each time 
before a logical formula is checked and cleared after 
the firing process.  

• Declarations: In the standard[1], it comprising 
definitions of place types, typing of variables and 
function definitions. In PIPE+, the declarations are 
already in the modeling process by defining place data 
types, transition condition formulas and arc annotations. 

E. Extensions On GUI  

The GUI package in PIPE mainly consists of a GUIFrame, 
a GUIView, and some supporting classes. The GUIFrame is the 
PIPE's graphical frame includes a menu, a toolbar and a 
statusbar. The GUIView is the panel to draw Petri net graphical 
elements. Since requirements and concepts for high level Petri 
nets are token storage and flow, our modification to the PIPE's 
GUI is focused on Petri net elements places, transitions and 
arcs. The common procedure to extend PIPE’s GUI is adding 
new selections on graphical elements’ property setting menu 
for new features. In PIPE+, after modifying the gui.handler 
package for each Petri net element class, the new selections are 
shown in a popup menu by right clicking a Petri net element. 
The places now have the choices of defining data type and 
editing tokens; the transitions can contain logical formulas; the 
arcs can be labeled by variable key. These new features are 
triggered by additional selections on GUI and used through 
customized panels or dialogs. 

F. Simulator 

The simulator not only needs to execute the net model 
visually, but also has to ensure correctness, fairness and good 
performance. In PIPE+, the high level Petri net simulator 
designs as follows: 

1) Graphical Simulation: Since in a low level Petri net, 
tokens are just black dots flowing from one place to another 
and the animation is visible to the user. In contrast, tokens in  
high level Petri nets are complex structured data, and 
especially when the number of tokens is large, which are 
inappropriate to be displayed upon graphical net; otherwise the 
graphical annotations are unreadable. Since the execution 
procedure is invisible to a user, the result can only be checked 
by looking into the contents of Places. In PIPE+, to view the 
tokens in the Places, user can open the Place edit panel and the 
value of tokens are displayed under the text area of Token 
List. Besides, the firing history is retained from PIPE by 
listing the  fired transition name orderly and updated instantly 
after a transition fires, thus the user clearly knows a transition 
is fired. 

2) Transition Occurrence Scheduling Algorithm: A 
scheduler is needed to coordinate the simulator’s token flow 
strategy efficiently. Since the performance of the simulator 
mostly affected by the times of transition condition 
calculation, the PIPE+ chooses the scheduling algorithm from 
[9] to minimize the recalculation of transition condition 
checking. The idea is to keep track of disabled transitions 
discovered during the search of enabled transitions, and use 
the locality principle, that is an occurring transition only 
affects the marking on immediate neighboring places, and 
hence the enabling of a limited set of neighbor transitions. For 
the implementation, we maintain an unknown list and a 
disabled list. All transitions initialized as unknowns will be 
randomly picked and checked for enabling status. If the status 
is disabled, the transition will be moved to disabled list. Upon 
occurrence of a transition, we update the status of neighboring 
transitions to the unknown list if they are in the disabled list. 
The neighboring transitions can be found through occurred 
transitions' output places. Therefore, the disabled transition 
avoid recalculation if the tokens of its input places are not 
changed. 

3) Enabling a Single Transition: In the high level Petri net 
concpets, tokens are meaningful data, when a selected 
transition start to check its expression, the expression’s 
variables are to be instantiated. Since a transition may connect 
to a number of input places, where each place contains a list of 
tokens, to see whether the transition is enabled or disabled, it 
has to check all the possible combinations of instantiation 
tokens from its input places. For example, if there are three 
input places and each place has 3 tokens, the number of their 
combinations is 3 � 3 � 3 � 27 . If one of the three input 
places is a power set, no matter how many regular tokens 
inside the abstract token, it only counts as one abstract token. 
So the combinations reduces to 3 � 3 � 1 � 9 combinations. 



 

4) An Summarization of the Complete Internal Simulation 
Process:  

a) All transitions in the net graph are initially stored in an 
unknown list; a disabled list is initialized to be empty; 

b) A transition is randomly selected from the unknown 
list, and is checked for enabledness; 

c) During the checking process of the selected transition, 
all the connected arcs and places of the transition are found; 

d) Combinations of tokens from the transition’s input 
places are orderly choosen to fill in its symbol table. Since 
symbols in symbol table are pairs of [key, object]. The keys 
are from arcs label; the objects are regular tokens. If the input 
place is a power set, the whole abstract token is sent as an 
object, otherwise only its first token is sent and the remaining 
tokens are still in place. For the symbol's key from output arcs, 
the object is empty because it is to be filled during transition 
firing action (after interpreting the post condition of transition 
formula); 

e) The formula expression in the transition is checked 
utilizing a parser. A Boolean value is returned: if it is true, the 
transition is enabled and is fired immediately; if it is false, the 
transition is not enabled with the current input tokens, the 
tokens in symbol table will go back to the input places; if all 
the combination of input tokens cannot enable the transition, 
the transition is moved into a disabled list Both checking and 
firing a transition formula needs to parse and interpret the 
formula; however, the checking process only affects a 
formula's pre-condition while the firing process only affects a 
formula's post-condition.  

f) After firing the transition, the tokens in the symbol 

table are sent to the output places according to the variables of 
arcs annotation and added to the tail of output places' token 
list. Since it changes the place marking of the output places, 
according to the scheduler algorithm’s locality principle, if the 
dependent transitions are in the disabled list, it can now be 
moved back to the unknown list. Then go back to step b). 

g) In step b), when unknown list is empty, the simulation 
process ended.   

V. SOME ISSUES OF PIPE+ 

A. Limitations of PIPE+ 

1) Limited Basic Types: As we mentioned above, currently, 
the place data type of the PIPE+ only supports two basic types, 
string and integer. Since PIPE+ using a structure to define 
basic types, the structure can be extended to accommodate 
more types. 

2) Flat Tokens: For the convinience of implementation, 
the place data type of the PIPE+ does not support nested 
powerset, such as {Bob, {book1, book2}}, but instead, it 
stores two flat tokens {Bob, book1}, {Bob, book2}. 

3) Restricted First-order Logic for Transition Formula: A 
new grammar is built for the convenience of interpretation and 
to avoid ambiguity. 

4) No True Concurrency: The PIPE+ only supports 
interleaving semantics. Besides, it does not support timed Petri 
nets. 

5) Analysis Module: Lack of an integrated tool to analyze 
the properties of a net model; 

6) Bugs and Errors: Since this is the first version of the 

Figure 6  Screenshot of Mondex in PIPE+ 



 

PIPE+ and our main purpose is to introduce the new tool, bugs 
are unavoidable.  

B. Testing the PIPE+ 

The most important part of testing is the transition 
condition formula. As the new parser and the interpreter were 
built for the restricted first-order logic formula, its correctness 
has to be assured. Our test cases are designed mainly on 
complex formulas including quantifier, relation expressions, 
arithmetic expressions and set expressions. 

C. Using the PIPE+ 

The PIPE+ has been applied to a Mondex[8] smart card 
system, which is an electronic purse payment system based on 
smart card technology. The model for a concrete transaction 
between two purses has eight operations (including abort) and 
four statuses, and we translated into PIPE+ model with ten 
transitions and four places. Figure 6 is a screenshot of Mondex 
in PIPE+, in which the simulation of a transition firing 
sequence is shown at the left bottom of the interface’s frame. 
After no more transition is available to fire, the result of the 
simulation is a final marking that can be read by opening the 
places, msg_out and ConPurse, to view contents which are 
tokens’ data. 

VI.  CONCLUSIONS 

In this paper, we present a tool PIPE+ supporting high level 
Petri nets editing and simulation. We believe PIPE+ can be a 
valuable tool for concurrent and distributed system modeling 
and simulation. PIPE+ is built upon an open source tool PIPE 
for low level Petri nets. We illustrated the process of 
extending PIPE, and discussed our design strategies, which 
provide helpful insights for others to create Petri net tools suit 
their own needs. Furthermore, PIPE+ is an open source tool 
and thus is available for sharing and continuous enhancements 
from worldwide research community. 
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