PIPE - A Modeling Tool

for High Level Petri Nets

Su Liu, Reng Zeng, Xudong He
School of Computing and Information Sciences
Florida International University
Miami, Florida 33199, USA
{sliu002, rzeng001, hex}@cs.fiu.edu

Abstract— Petri nets are a formal, graphical and executable
modeling technique for the specification and analys of
concurrent systems and have been widely applied icomputer
science and many other engineering disciplines. Lovevel Petri
nets are simple and useful for modeling control flas; however,
they are not powerful to define data and system fustionality.
High level Petri nets were developed to support dat and
functionality definitions [1]. To support the practical applications
of Petri nets formalism, tools for designing and eacuting Petri
nets are necessary. Although there are many existintools for
supporting low level Petri nets [5], few tools aravailable for high

create a tool for editing and simulating the higbel Petri nets;
unfortunately no such tool exists yet. A realigittempt is to
develop a tool to support a restricted and concestization of
high level Petri nets. The most critical composesftthe high
level Petri net definitions are the net annotatiaith regard to
transitions, which are algebraic terms of Boolegret In [15],
we viewed first order logic formulas as the algébr@rms
associated with transitions and thus adopted thesligate
transition net view as a concrete realization ghhievel Petri
nets.

level Petri nets. There is especially a lack of tt®to support high
level Petri net notation proposed in the internatimal standard

[1]. In this paper, we present a tool, called PIPE+ to support a
subset of high level Petri nets proposed in [1]. PE+ is built

upon an existing low level Petri net tool PIPE (Pldiorm
Independent Petri Net Editor) [2]. This paper descibes the

functionality of PIPE+ as well as illustrates the pocess of
extending PIPE, which provides helpful insights forothers to

create Petri net tools suit their own needs. Furtermore, PIPE+
is an open source tool and thus is available for viaus

enhancements from worldwide research community.

Keywords: Petri Net; Modeling Tools

. INTRODUCTION

Name High level Net | Graphical Simulator
Type Editor
AIPINA Algebraic Petri Yes No
Nets
CoopnBuilder CO-OPN Yes No
languag
CPN Tools Colored Petri Yes Yes
Nets
HISIm Hybrid Petri Yes Yes
Nets
Renew Object Oriented Yes Yes
Petri nets
PIPE+ High level Petri Yes Yes
nets

Petri nets have been used to describe a wide rafge
systems since their invention in 1962 [3]. They amgraphical
and formal method for describing and studying coreu and
distributed systems [4]. Low level Petri nets atstable to
model control flows and are applicable to work fleystems;
however are not adequate to describe complex sgstdigh
level Petri nets were developed to support thendiefn of data
and functional processing [1]. To support the pcatt
applications of Petri net formalism, tools for dieg and
executing Petri nets are needed. In [5], a Petriow database
listed the tools developed in the past several diea
Unfortunately, many of the tools described in tla¢abase as
well as in literature are no longer maintained ailable and
few of them support high level Petri nets, espgcidie high
level Petri net definitions and notations proposedhe 2001
international standard [1]. Table 1 lists repréatve tools
supporting some forms of high level Petri nets.

The high level Petri nets proposed in the inteomat
standards draws concepts from predicate transitiets,
colored Petri nets, and algebraic Petri nets; aruViges
abstract and general definitions and notions. Hdsirable to

* PIPE+ can be downloaded at http://users.cis diw-esliu002/

Table 1 A List of High Level Petri net Tools

It requires tremendous effort to build a high leRekri net
tool from scratch and is especially difficult tesase the quality
of the initial design. It is desirable to leveramyecessful results
and extend mature and existing tools. It is of #rdous value
to build upon open source tools so that the resuitiew tool
can be shared and improved by the worldwide rekearc
community. PIPE*+is a tool to support high level Petri nets
where transition conditions are defined in termdirst order
logic formulas [14]. PIPE+ extends a well developgaen
source low level Petri net tool called PIPE (Platfo
Independent Petri net Editor) [6]. Furthermore PiREtains
the original low level Petri net editing and exéegtfeatures,
which allows user to choose appropriate net let@lsodel
target systems.

In this paper, we first briefly review the backgnoluof
basic and high level Petri net concepts. We inttedthe
chosen low level Petri net tool PIPE that PIPEHtkoni, and
then present implementation details of the extenaitcording
to the high level Petri net concepts. We discusgditions and
applications of the tool, and our contributions gedspectives.

Il. PETRINETS AND HIGH LEVEL PETRINETS

The Petri net structure consists of a finite setplafces
(drawn as circles), a finite set of transitionsa(@n as bars), a
finite set of directed arcs (drawn as arrows), arset of tokens
(drawn as dots) to define an initial marking. Thesaconnect
from a place to a transition or vice versa, neaween places
or between transitions. The places from which @nrans to a
transition are called the input places of the ftans the places
to which arcs run from a transition are called dgput places
of the transition. The places can contain multifgkens and
thus are of multi set type (or bag). A distributimfitokens over
the places of a net is called a marking. A tramsitinay fire
whenever there are enough tokens in all input place

According to the international standard [1], a highel
Petri net graph comprises: a net graph, place typkse
marking, arc annotations, transition condition dedlarations.
The net graph is the net structure; place typesnareempty
sets, restrict the data structure of tokens in glaee; place
markings are collection of elements (data itemsoeiated
with places, called tokens; arc annotations areriimsd with
expressions which may comprise constants varigbles X, y)
and function images (e.g., f(x)); transition coruis are
Boolean expressions inscribed in; declarations ciwing
definitions of place types, typing of variables afushction
definitions. For net execution, the most importantransition
enabling. Enabling a transition involves the magkirf its input
places. When an enabled transition occurs, theliagaiokens
from input place's are subtracted and the resultikgns of the
transition Boolean expression are added to theubpipces.

Ill. AN OVERVIEW OFPIPE

PIPE [2] is a Platform Independent Petri net Editoedit,
animate and analyze low level Petri nets, which blesr
design and incorporates the latest XML Petri nahdards of
storing format, the Petri Net Markup Language (PNMLis
implemented in Java and can be logically dividei ithree
major components [6], shown in Figure 1: the grephuser
interface (GUI), a layer managing the interactibesween the
GUI and the modules (DataLayer), and analysis nesdul

—

pipe.gui

—

ipipe.datal ayerfe —————————________ S

pipe.
analysisModule

Figure 1 Package Diagram for PIPE

A. Graphical User Interface

PIPE’'s graphical user interface is developed uslaga
Swing API as it provides full GUI functionalitiesi@ mimics
the platform it runs on. Besides, as PIPE is ascpatform
application this was deemed useful for providingasive look
and feel. The GUI component includes GUIFrame, G\

and classes such as action, handler and widgetsosiny
Swing APIs. From a user perspective, there arentajor parts:
Editor and Simulator.

» Editor: Users are able to edit a low level Petri net by
clicking and drawing Petri net graphical elements
through the menu bar, toolbar. On the toolbarists|
all the Petri net element thumbnails, such as place
transition and arc, which can be selected and atided
the white canvas (tabbed pane) of the editor. Bssid
these added elements’ annotations and attributebeca
defined by selecting one of the elements and poanup
editing dialog box.

» Simulator: There is a switcher button between editor
mode and simulation mode. Using the simulator,ex us
is able to fire a random transition or fire a numbé
transitions randomly selected among enabled orfes. T
simulation process includes subtracting tokens from
input places and adding them to output places while

firing a transition. Besides, the animation histasy
displayed on the left bottom of the interface frabye
listing transition’s label orderly.

B. Internal Architecture of PIPE—The DatalLayer

DataLayer
PetriNetObject

Arc |

PlaceTransitionObject |

Transition

Figure 2 The Hierarchy of PetriNetOjbect Classes

The core component of PIPE is the data layer, which
maintains states and contains all the classestosegresent a
Petri net. Figure 2 shows the hierarchy of impdrRetri net
object classes [6], including Arc, Place and Tridmsiclasses
inherited from PetriNetObject because they have nsom
variables and methods, such as id, name, locatton,

In the data layer component, each Petri net ispsutated
by an instance of the DatalLayer class, which costall the
Petri net objects stored in ArrayLists enablingélasy addition
of new objects. It contains not only methods toeascall its
internal objects and to return its internal liststhe form of
object Arrays, but also methods to calculate threecti markup,
initial markup, forwards incidence matrix, backwaidcidence
matrix, combined incidence matrix and enabled itams.

Besides data layer, PIPE has analysis module tnélysis
and conclusions on the properties of Petri net madeh as
boundedness, liveness, reachable markings and so on

C. Saving and Loading

PIPE is capable of saving and loading nets andngrihe
Petri net data layer into a Petri net Markup Lamggu@NML).
An Extensible Stylesheet Language Transformatio8L(K) is
used to transform it between PNML and XML files.

IV. PIPE

A. Overview of the Extension

Similar to PIPE, PIPE+ is also an editor and a amon.
The editor is to model a system visually througgraphical
interface. The goal is to utilize all the beneftiat a high level
Petri net provided with convenience. The detaits @esented
below according to the high level Petri net consepix
elements in reference [1]. The simulator is no &ng simple
black dot token animation game but to manage theement
of meaningful data. We developed a mandatory canpiith
an interpreter to process token data inside tiansitonditions,
which are defined using restricted first-order todgBesides, a
simulation algorithm is applied to ensure its fegs and
improve its performance.

B. A Net Graph

Since the graphical elements of a high level Petriare the
same as low level ones, the PIPE’s graphical etitatained.

C. Place Type and Place Marking

The main difference between high level and low ll&etri
nets is that tokens are no longer black dots, lumptex
structured data. Place types are non-empty sdtsdsigict the
data structure of tokens in the places. The dat&tsre is an
array of basic types, such as integer and strimg,ceefined by
user. For example, assuming a log in user accaumat taken
has two elements,
represented by two basic data types, string arebént In a
high level Petri net's place, a place data typassribed to
restrict the data structure of tokens. In anothay,wthe data
type of tokens can be added into the place has akeady
defined beforehand.

To implement the concept that tokens with datacstre, a
data storage system is needed. Based on PIPEathdayer
package is modified by adding three classes: Data,Tjoken,
abToken (Figure 3).

« DataType: The main data structure in class DataType

is a Vector storing a list of basic types' nameictvlis

used to show what data structure the token or place

holds. The data structure consists of an arrayasfch
types, such as string, integer, etc. For our tbasic

types are limited to strings and integers for the

simplicity but are adequate for most of applicagion

For the convenience of extension on basic types, we

introduce a new structure BasicType to data laike
structure BasicType (see Figure 4) includes a diaig
field "Kind" to indicate which type it is (in PIPED
represents integer, 1

username and password, which are

represents string). Space is
allocated to both integer and string since it is

undecided before the “Kind” is defined. Further
extension on basic types needs to enhance the class
BasicType by allocating extra space and redefine
“Kind”.

PetriNetObject
\

o TN

e

%%

Figure 3 Extensions on DataLayer for PIPE+

Token: Class Token is added to the data layer to
maintain data value. The important field is a Vecto
storing a list of instances of value with type bkt
BasicType, see Figure 4. Token is a basic datagtor
element in the places and its value is calculatethe
transitions. The simulation process is fetchingadat
value from the token's BasicType and fill the
calculated result value to another token’s Basi€Typ

Abstract Token: Since first-order logic covers
quantification, the whole collection of tokens iplace
need to be checked by transition condition expoessi
For example, if an expression includexx ‘e X", all

the tokens in “X” needs to be checked to see wiethe
“X” exists, so the whole collection of tokens iscteed
while checking enabledness of a transition. Theisk

in this type of place are defined as a power satefy
class abToken (abstract token) is added into tha da
layer to store the power set. It has a field stpanlist

of regular tokens with the same data type, s hhs

a data type to restrict the tokens data structire.
flatten the nested power sets by duplicating saetdst
For example, in a library system, one user maydvorr

a list of books, so that the database (power set) i
library system is {username, password,
books_borrowed{book1, book2,...} } is convertedaint
{username, password, bookl}, {username, password,
book2}. This design sacrifices the space for the
convenience of implementation, which can be further
improved.

Token
| — Kind
BasicType §\ —
BasicType
- Tstring
BasicType =

DataType

Figure 4 Structure of Class Token

As a result, the places in PIPE+ stores a listegfular
tokens or an abstract token that contains a callect regular
tokens. Whether the connected transition can fatakgular
token or an abstract token depends on the plaag@ver set
or not. The user can add, edit and delete tokems faces to
create a place marking.

In PIPE+, a place stores tokens by List contaitiee,
place's capacity is built as unbounded (rememb@stnothing
to do with the number of different tokens that nagypear in a
particular place). However, in the discussion df pbunded

and unbounded places have the same expressive .pdwer

bounded place is preferable for the reason of limteon and
redundancy.

In PIPE+, copies of token are allowed to storehim $ame
place. Since whether the place needs to removeofiges of
token depends on what the model it is, this carfupeher
improved by supporting an option of copy remove.

D. Transition Conditions and Arc Annotations

Transition conditions are guards controlling thenfing of
the tokens. PIPE+ use first-order logic to definansition
condition formulas, which, syntactically, consisfsvariables
and logic operators. Variables in the formula aetljzates that
can be instantiated by value from input tokens. Biaed with
logic operators the formula can be calculated. $¢icadly, as
transition is a guard to control token flows, isha check the
value of tokens from input places and formulate rneleens
conform to the output place type, the formula cstssof two
parts: pre-condition and post-condition. However,RIPE+,
the user is not supposed to separate the two oomslit
explicitly, because the interpreter can differdmstitnem by the
type of variables.

In PIPE+, arc annotations are variables to assissition
expression calculation by mapping token valuexpression’s
predicate variables. Arc variables are restrictetld appeared
in the connected transition expression’s variables the
mapping. Since a transition is connected by inmat autput
arcs and arcs are connected to places, the prediadatbles in
the transition expressions are classed into inputkles and
output variables. For example, in Figure 5, a araré input
variables while c is output variable.

In a transition calculation process shown in Figbren
step (1), each token in the connected place igyfioounded to
the connected arc variable; as a pair, {varialoken}, they are

fetched into a symbol table of the transition (nibie pair with
output variable’s token value is temporarily emptyd to be
filled by the result of the expression calculatiolm) step (2),
the input variables in the transition expressiom logate token
value through the pair's arc variables by looking symbol
table. In step (3), after transition expressiorncwation, the
output variables are assigned with result value thedsymbol
table’s output variable pairs are filled by theualIn step (4),
the output pairs’ token are added to the connemiigout places
according the arc’s variables. For example, ason ithe output
arc, c's token in symbol table [bob] is added ® dtput place.

Symbol Table

1y s
//” = ~le*a, [Bob,500] |
7 /m‘ | ;;, [60!

[Bob,500]
[Joe,1000]

al J
/ ,f>{ d21sbAc=4] |

Figure 5 An Enabled Transition Formula Calculation
Process

* Restricted First Order Logic Transition Formula
Expressionin PIPE+, it is called restricted because the
grammar we built for the tool has limitations. Sinc
each predicate variable has to be instantiatedysiee
cannot use free variable that does not appeaeimith
annotation, otherwise the calculation result is
undetermined. Also, it does not support predefined
function, like f(n), since the meaning of the fuant
has to be declared beforehand, which is equivatent
define its operations in a single logical sentebge
using the connecting operatox™ which simplifies the
implementation of expression interpreter. Howethes,
restricted version of first order logic is still rye
powerful, because it does support complex expressio
such as:

(@a=b)A3ceC((c[1]>a[2])A(C'=C—{b}uU
{[a[1], c[2]})). (1)

In (1), lower case letters represent regular tokens
upper case represent power s€t; by convention

represents output variables and also is a power se

(upper letters); it further indicates the clausa igost-
condition because output variables at the left sifle
the equation means assignmedt] means the f
element value ic’'s data structure.

» Parser and InterpreterBecause logical formulas need
to be parsed and interpreted, we build a compilér w
a parser and an interpreter for the restricted éirder
logic formula. The parser includes a scanner, wkich
built by a lex file and generated by jflex 1.4.3[1A
BNF grammar is built in cup file and generated by
leveraging the tool jcup v11 [17]. Since the tréosi

formula does not explicitly separate pre and posF. Simulator

conditions, but only pre-conditions need to be

The simulator not only needs to execute the netainod

calculated when checking whether the transition is;isyally, but also has to ensure correctness, darand good

enabled to fire or not, the interpreter has toedéhtiate
pre and post conditions. A trick is found that het
post-condition, it usually starts with an outputighble
equals a subformula, for example, in (€),=C —
{b} U {[a[1],c[2]}) is a post-condition becausgis

performance. In PIPE+, the high level Petri net wator

designs as follows:

1) Graphical Simulation:Since in a low level Petri net,

tokens are just black dots flowing from one placeahother

output variable. Therefore in the interpreter, whenand the animation is visible to the user. In castireokens in
checking a clause with an "=" operator, the lefiha high |evel Petri nets are complex structured daad
side of the "=" variable is checked. If it is input ggpecially when the number of tokens is large, thace

variable, this clause is a pre-condition and theis=
interpreted as a logic operator equal, which resulia
Boolean true or false; on the other hand, if itais

inappropriate to be displayed upon graphical nibigemvise the
graphical annotations are unreadable. Since theutre

output variable, the clause becomes a post-conditioprocedure is invisible to a user, the result cdy be checked

assign the result value of right hand side forntalthe
left hand side output variable.

* Symbol Table: In PIPE+ each transition maintains

temporary symbol table to facilitate the interprete

does not use one big table for all the transitions

tokens in the Places, user can open the Placpaui and the
value of tokens are displayed under the text afedoken

List. Besides, the firing history is retained froRIPE by

é}isting the fired transition name orderly and ugdinstantly

after a transition fires, thus the user clearlywaa transition

because it may cause name conflict and is hard tt fired- . _
manage. The symbol table contains a list of elésnen 2) Transition Occurrence Scheduling AlgorithmA

that are structured by a pair of key and objece pair

scheduler is needed to coordinate the simulatokert flow

of key and object is obtained from the transition'sstrategy efficiently. Since the performance of gimulator
connected arc annotation and place. The reason waostly affected by the times of transition conditio

maintain the pair of key and object instead of kay

calculation, the PIPE+ chooses the scheduling elgorfrom

token is because besides regular token type, the K&g] to minimize the recalculation of transition ation
may pair with a power set (abstract token type)..necking. The idea is to keep track of disabledsitions

Moreover, the symbol table is initiated each tim
before a logical formula is checked and clearedraft

the firing process.

discovered during the search of enabled transitiangl use
the locality principle, that is an occurring tramsi only
affects the marking on immediate neighboring placed

* Declarations: In the standard[1], it comprising hence the enabling of a limited set of neighbamgitions. For
definitions of place types, typing of variables andthe jmplementation, we maintain an unknown list aamd
function definitions. In PIPE+, the declaration® ar gigapied list. Al transitions initialized as unkmos will be

already in the modeling process by defining plaaed

types, transition condition formulas and arc antiots.

E. Extensions On GUI

The GUI package in PIPE mainly consists of a GUttea
a GUIView, and some supporting classes. The GUIErarthe
PIPE's graphical frame includes a menu, a toolbat a
statusbar. The GUIView is the panel to draw Pedtigraphical
elements. Since requirements and concepts forlaigh Petri
nets are token storage and flow, our modificatmthe PIPE's
GUI is focused on Petri net elements places, tiansi and
arcs. The common procedure to extend PIPE's Gldding
new selections on graphical elements’ propertyirgettinenu
for new features. In PIPE+, after modifying the .gandler
package for each Petri net element class, the algtons are
shown in a popup menu by right clicking a Petri eletment.
The places now have the choices of defining dgte tgnd
editing tokens; the transitions can contain logfoainulas; the
arcs can be labeled by variable key. These newrfesatare
triggered by additional selections on GUI and ufadugh
customized panels or dialogs.

randomly picked and checked for enabling statuthdfstatus
is disabled, the transition will be moved to digablist. Upon
occurrence of a transition, we update the statuseighboring
transitions to the unknown list if they are in tthisabled list.
The neighboring transitions can be found througbuoed
transitions' output places. Therefore, the disalitadsition
avoid recalculation if the tokens of its input macare not
changed.

3) Enabling a Single Transitiorin the high level Petri net
concpets, tokens are meaningful data, when a sdlect
transition start to check its expression, the esgiomn's
variables are to be instantiated. Since a tramsitiay connect
to a number of input places, where each place oengalist of
tokens, to see whether the transition is enabledisabled, it
has to check all the possible combinations of mt&tion
tokens from its input places. For example, if thare three
input places and each place has 3 tokens, the nunflteeir
combinations i3 x 3 x 3 =27. If one of the three input
places is a power set, nho matter how many regulkents
inside the abstract token, it only counts as orstratt token.
So the combinations reduces3tx 3 X 1 = 9 combinations.

4) An Summarization of the Complete Internal Simuratio table are sent to the output places accordinggwhiables of
Process: arcs annotation and added to the tail of outputgdatoken
a) All transitions in the net graph are initially séorin an ~ list. Since it changes the place marking of thepouplaces,
unknown list; a disabled list is initialized to bmpty; according to the scheduler algorithm’s localityngiple, if the

L dependent transitions are in the disabled listait now be
list g?}fi;fﬁ:ggg ;zrr:r?;i&?é);]esseslfected from the unknownmoved back to the unknown list. Then go back tp ke

¢) During the checking process of the selected triamsit g) In Sfpdb)' when unknown list is empty, the simofat
all the connected arcs and places of the transaierfound; process ended.

d) Combinations of tokens from the transition’s input V. SOME ISSUES OFPIPE+
places are orderly choosen to fill in its symbdbl¢éa Since o
symbols in symbol table are pairs of [key, objeTfie keys A Limitations of PIPE+
are from arcs label; the objects are regular tokdrike input 1) Limited Basic TypesAs we mentioned above, currently,
place is a power set, the whole abstract tokereig as an the place data type of the PIPE+ only supportshasic types,
object, otherwise only its first token is sent ahe remaining string and integer. Since PIPE+ using a structoreldfine
tokens are still in place. For the symbol's keyrfroutput arcs, basic types, the structure can be extended to ancolate
the object is empty because it is to be filled dgriransition more types.
firing action (after interpreting the post conditiof transition 2) Flat Tokens For the convinience of implementation,
formula); the place data type of the PIPE+ does not suppested

e) The formula expression in the transition is checkechowerset, such as {Bob, {bookl, book2}}, but insteat
utilizing a parser. A Boolean value is returnedt i true, the stores two flat tokens {Bob, book1}, {Bob, book2}.
transition is enabled and is fired immediatelyit i false, the 3) Restricted First-order Logic for Transition Formula
transition is not enabled with the current inpuketos, the new grammar is built for the convenience of intetation and
tokens in symbol table will go back to the inpuagas; if all 5 avoid ambiguity.
the combination of input tokens cannot enable thasition, 4) No True Concurrency:The PIPE+ only supports
the transition is moved into a disabled list Bottecking and jnterieaving semantics. Besides, it does not supipoed Petri
firing a transition formula needs to parse andrpmet the nets.

::ormu:al; howeve(;,.t_ the ﬁreﬁ:in? _process ;)nlyff af{eats 5) Analysis Moduleiack of an integrated tool to analyze
ormula’s pre-condition while the firing procesdyoaffects a properties of a net model:

formula’s pOSt.-FZOI’]dItIOI"I. .) 6) Bugs and Errors:Since this is the first version of the
f) After firing the transition, the tokens in the syohb

[(EETE— EYl

MSg_kum[!]i'smnme"]‘ 3purse=CF- ((purse[1]=ms}

e I [I

e e R P |

Arttemens Someois. + _! . % T
3|2

PredoseLopc syenchs

e clelul=-T(l1l0]

2

Puace Edtor

ane: [erprsd
S [Marding: [Add New Token] [Token List]

% Simulation

_Process
G—

ot | oo [o] eme |

.
- ClearExceptionlog

o i

Animation Mode: Red transitions are enablad, dick a transiton 1o fre it

Figure 6 Screenshot of Mondex in PIPE+

PIPE+ and our main purpose is to introduce the toely bugs [1]
are unavoidable. 2l
B. Testing the PIPE+

The most important part of testing is the tranasitio
condition formula. As the new parser and the imtegy were 3]
built for the restricted first-order logic formulis correctness
has to be assured. Our test cases are designedy noain [4]
complex formulas including quantifier, relation esgsions,
arithmetic expressions and set expressions. [5]
C. Using the PIPE+ [6]

The PIPE+ has been applied to a Mondex[8] smad car
system, which is an electronic purse payment systesed on

smart card technology. The model for a concretasaetion]
between two purses has eight operations (includbat) and
four statuses, and we translated into PIPE+ mod#i ten 8]
transitions and four places. Figure 6 is a screznshMondex
in PIPE+, in which the simulation of a transitioirinfy
sequence is shown at the left bottom of the interfaframe. [9]
After no more transition is available to fire, thesult of the
simulation is a final marking that can be read Ipgrong the
places, msg_out and ConPurse, to view contentshwaie
tokens’ data. [10]
VI. CONCLUSIONS [11]
In this paper, we present a tool PIPE+ supportiiggy hevel
Petri nets editing and simulation. We believe PIRE#® be a
valuable tool for concurrent and distributed systaimdeling
and simulation. PIPE+ is built upon an open sotwcé PIPE 15
for low level Petri nets. We illustrated the pracesf
extending PIPE, and discussed our design strategieieh [13]
provide helpful insights for others to create Peéi tools suit
their own needs. Furthermore, PIPE+ is an opencsotool
and thus is available for sharing and continuodsroements [14]
from worldwide research community.
Acknowledgements This work was partially supported by 1ol
NSF grants HRD-0833093.
[16]
[17]

REFERENCES

High-level Petri Nets-Concepts, Definitions and (@raal Notation,
Version 4.7.1, 2000

Pere Bonet, Catalina M. Llado, Ramon PuigjanerPEPN2.5: a Petri
Net tool for performance modeling,” Proc. 23rd batAmerican
Conference on Informatics (CLEI 2007), San Josest&®ica, October
2007

Reisig, Wolfgang, “Petri nets: an introduction,prisiger-Verlag New
York, Inc.NY, 1985

Tadao Murata, “Petri Nets: Properties, Analysis aigblications,”
Proceedings of IEEE, vol. 77 No.4, Chicago, IL, ihbB88

Petri Net Tool Database. http://www.informatik.uni-
hamburg.de/TGl/PetriNets/tools/db.html

James Bloom, Clare Clark, Camilla Clifford, Alex mran, Haroun
Khan, Manos Papantoniou, “Platform Independent ifetr Editor:
Final Report,” London, March 2003

Carlos A. Heuser, Gernot Richter, “Constructs faddling Information
Systems with Petri Nets,” 13th International Coafere on Application
and Theory of Petri Nets, 1992, Sheffield, UK

Reng Zeng, Xudong He, “A Formal Specification of Mex Using
SAM,” The Fourth IEEE International Symposium omgee-Oriented
System Engineering, 2008

Kjeld H. Mortensen, “Efficient Data-Structures aéAdgorithms for a
Coloured Petri Nets Simulator,” 3rd Workshop andofial on Practical
Use of Coloured Petri Nets and the CPN Tools, Asrhimiversity,
August 2001

Didier Buchs, Steve Hostettler, Alexis Marechald dlatteo Risoldi,
“AIPINA: An Algebraic Petri Net Analyzer,” J. Espgaa and R.
Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 34928210

A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen,.J@vortrup, M.S.
Stissing, M. Westergaard, S. Christensen, and Ksele “CPN Tools
for Editing, Simulating, and Analysing Coloured Pédets,” Proc. of
24th International Conference on Applications ahédry of Petri Nets ,
2003

R. Milner, M. Tofte, R. Harper, and D. MacQueenh&Tdefinition of
Standard ML,” MIT Press, Cambridge, MA, 1997

CPN ML Reference,
http://www.daimi.au.dk/designCPN/man/Reference/Rafee.Main3.C
PN.ML.pdf

Andrews, Peter, “An Introduction to Mathematicalioand Type
Theory: To Truth Through Proof,” 2nd ed. Kluweradiemic
Publishers, 2002.

X. He and T. Murata: “High-Level Petri Nets — Exé@mns, Analysis,
and Applications”, Electrical Engineering Handbdekl. Wai-Kai
Chen), Elsevier Academic Press, 2005, 459-476.

JFlex Lexical Analyzer Generator. http://jflex.cefex.html

JCUP Parser Generator. http://www2.cs.tum.edu/pifeup/

