
* PIPE+ can be downloaded at http://users.cis.fiu.edu/~sliu002/

PIPE+ - A Modeling Tool for High Level Petri Nets

Su Liu, Reng Zeng, Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA

{sliu002, rzeng001, hex}@cs.fiu.edu

Abstract— Petri nets are a formal, graphical and executable
modeling technique for the specification and analysis of
concurrent systems and have been widely applied in computer
science and many other engineering disciplines. Low level Petri
nets are simple and useful for modeling control flows; however,
they are not powerful to define data and system functionality.
High level Petri nets were developed to support data and
functionality definitions [1]. To support the practical applications
of Petri nets formalism, tools for designing and executing Petri
nets are necessary. Although there are many existing tools for
supporting low level Petri nets [5], few tools are available for high
level Petri nets. There is especially a lack of tools to support high
level Petri net notation proposed in the international standard
[1]. In this paper, we present a tool, called PIPE+*, to support a
subset of high level Petri nets proposed in [1]. PIPE+ is built
upon an existing low level Petri net tool PIPE (Platform
Independent Petri Net Editor) [2]. This paper describes the
functionality of PIPE+ as well as illustrates the process of
extending PIPE, which provides helpful insights for others to
create Petri net tools suit their own needs. Furthermore, PIPE+
is an open source tool and thus is available for various
enhancements from worldwide research community.

Keywords: Petri Net; Modeling Tools

I. INTRODUCTION

Petri nets have been used to describe a wide range of
systems since their invention in 1962 [3]. They are a graphical
and formal method for describing and studying concurrent and
distributed systems [4]. Low level Petri nets are suitable to
model control flows and are applicable to work flow systems;
however are not adequate to describe complex systems. High
level Petri nets were developed to support the definition of data
and functional processing [1]. To support the practical
applications of Petri net formalism, tools for creating and
executing Petri nets are needed. In [5], a Petri net tool database
listed the tools developed in the past several decades.
Unfortunately, many of the tools described in the database as
well as in literature are no longer maintained or available and
few of them support high level Petri nets, especially the high
level Petri net definitions and notations proposed in the 2001
international standard [1]. Table 1 lists representative tools
supporting some forms of high level Petri nets.

The high level Petri nets proposed in the international
standards draws concepts from predicate transition nets,
colored Petri nets, and algebraic Petri nets; and provides
abstract and general definitions and notions. It is desirable to

create a tool for editing and simulating the high level Petri nets;
unfortunately no such tool exists yet. A realistic attempt is to
develop a tool to support a restricted and concrete realization of
high level Petri nets. The most critical components of the high
level Petri net definitions are the net annotations with regard to
transitions, which are algebraic terms of Boolean type. In [15],
we viewed first order logic formulas as the algebraic terms
associated with transitions and thus adopted the predicate
transition net view as a concrete realization of high level Petri
nets.

Name High level Net
Type

Graphical
Editor

Simulator

AlPiNA Algebraic Petri
Nets

Yes No

CoopnBuilder CO-OPN
language

Yes No

CPN Tools Colored Petri
Nets

Yes Yes

HISIm Hybrid Petri
Nets

Yes Yes

Renew Object Oriented
Petri nets

Yes Yes

PIPE+ High level Petri
nets

Yes Yes

Table 1 A List of High Level Petri net Tools

It requires tremendous effort to build a high level Petri net
tool from scratch and is especially difficult to assure the quality
of the initial design. It is desirable to leverage successful results
and extend mature and existing tools. It is of tremendous value
to build upon open source tools so that the resulting new tool
can be shared and improved by the worldwide research
community. PIPE+* is a tool to support high level Petri nets
where transition conditions are defined in terms of first order
logic formulas [14]. PIPE+ extends a well developed open
source low level Petri net tool called PIPE (Platform
Independent Petri net Editor) [6]. Furthermore PIPE+ retains
the original low level Petri net editing and executing features,
which allows user to choose appropriate net levels to model
target systems.

In this paper, we first briefly review the background of
basic and high level Petri net concepts. We introduce the
chosen low level Petri net tool PIPE that PIPE+ built on, and
then present implementation details of the extension according
to the high level Petri net concepts. We discuss limitations and
applications of the tool, and our contributions and perspectives.

II. PETRI NETS AND HIGH LEVEL PETRI NETS

The Petri net structure consists of a finite set of places
(drawn as circles), a finite set of transitions (drawn as bars), a
finite set of directed arcs (drawn as arrows), and a set of tokens
(drawn as dots) to define an initial marking. The arcs connect
from a place to a transition or vice versa, never between places
or between transitions. The places from which an arc runs to a
transition are called the input places of the transition; the places
to which arcs run from a transition are called the output places
of the transition. The places can contain multiple tokens and
thus are of multi set type (or bag). A distribution of tokens over
the places of a net is called a marking. A transition may fire
whenever there are enough tokens in all input places.

According to the international standard [1], a high level
Petri net graph comprises: a net graph, place types, place
marking, arc annotations, transition condition and declarations.
The net graph is the net structure; place types are non-empty
sets, restrict the data structure of tokens in the place; place
markings are collection of elements (data items) associated
with places, called tokens; arc annotations are inscribed with
expressions which may comprise constants variables (e.g., x, y)
and function images (e.g., f(x)); transition conditions are
Boolean expressions inscribed in; declarations comprising
definitions of place types, typing of variables and function
definitions. For net execution, the most important is transition
enabling. Enabling a transition involves the marking of its input
places. When an enabled transition occurs, the enabling tokens
from input place's are subtracted and the resulting tokens of the
transition Boolean expression are added to the output places.

III. AN OVERVIEW OF PIPE

PIPE [2] is a Platform Independent Petri net Editor to edit,
animate and analyze low level Petri nets, which has clear
design and incorporates the latest XML Petri net standards of
storing format, the Petri Net Markup Language (PNML). It is
implemented in Java and can be logically divided into three
major components [6], shown in Figure 1: the graphical user
interface (GUI), a layer managing the interactions between the
GUI and the modules (DataLayer), and analysis modules.

Figure 1 Package Diagram for PIPE

A. Graphical User Interface

PIPE’s graphical user interface is developed using Java
Swing API as it provides full GUI functionalities and mimics
the platform it runs on. Besides, as PIPE is a cross platform
application this was deemed useful for providing a native look
and feel. The GUI component includes GUIFrame, GUIView

and classes such as action, handler and widgets supporting
Swing APIs. From a user perspective, there are two major parts:
Editor and Simulator.

• Editor: Users are able to edit a low level Petri net by
clicking and drawing Petri net graphical elements
through the menu bar, toolbar. On the toolbar, it lists
all the Petri net element thumbnails, such as place,
transition and arc, which can be selected and added to
the white canvas (tabbed pane) of the editor. Besides,
these added elements’ annotations and attributes can be
defined by selecting one of the elements and pop up an
editing dialog box.

• Simulator: There is a switcher button between editor
mode and simulation mode. Using the simulator, a user
is able to fire a random transition or fire a number of
transitions randomly selected among enabled ones. The
simulation process includes subtracting tokens from
input places and adding them to output places while
firing a transition. Besides, the animation history is
displayed on the left bottom of the interface frame by
listing transition’s label orderly.

B. Internal Architecture of PIPE—The DataLayer

Figure 2 The Hierarchy of PetriNetOjbect Classes

The core component of PIPE is the data layer, which
maintains states and contains all the classes used to represent a
Petri net. Figure 2 shows the hierarchy of important Petri net
object classes [6], including Arc, Place and Transition classes
inherited from PetriNetObject because they have common
variables and methods, such as id, name, location, etc.

In the data layer component, each Petri net is encapsulated
by an instance of the DataLayer class, which contains all the
Petri net objects stored in ArrayLists enabling the easy addition
of new objects. It contains not only methods to access all its
internal objects and to return its internal lists in the form of
object Arrays, but also methods to calculate the current markup,
initial markup, forwards incidence matrix, backwards incidence
matrix, combined incidence matrix and enabled transitions.

Besides data layer, PIPE has analysis module to do analysis
and conclusions on the properties of Petri net model, such as
boundedness, liveness, reachable markings and so on.

C. Saving and Loading

PIPE is capable of saving and loading nets and writing the
Petri net data layer into a Petri net Markup Language (PNML).
An Extensible Stylesheet Language Transformation (XSLT) is
used to transform it between PNML and XML files.

IV. PIPE+

A. Overview of the Extension

Similar to PIPE, PIPE+ is also an editor and a simulator.
The editor is to model a system visually through a graphical
interface. The goal is to utilize all the benefits that a high level
Petri net provided with convenience. The details are presented
below according to the high level Petri net concept’s six
elements in reference [1]. The simulator is no longer a simple
black dot token animation game but to manage the movement
of meaningful data. We developed a mandatory compiler with
an interpreter to process token data inside transition conditions,
which are defined using restricted first-order logic. Besides, a
simulation algorithm is applied to ensure its fairness and
improve its performance.

B. A Net Graph

Since the graphical elements of a high level Petri net are the
same as low level ones, the PIPE’s graphical editor is retained.

C. Place Type and Place Marking

The main difference between high level and low level Petri
nets is that tokens are no longer black dots, but complex
structured data. Place types are non-empty sets that restrict the
data structure of tokens in the places. The data structure is an
array of basic types, such as integer and string, and defined by
user. For example, assuming a log in user account as a token
has two elements, username and password, which are
represented by two basic data types, string and integer. In a
high level Petri net's place, a place data type is inscribed to
restrict the data structure of tokens. In another way, the data
type of tokens can be added into the place has been already
defined beforehand.

To implement the concept that tokens with data structure, a
data storage system is needed. Based on PIPE, the data layer
package is modified by adding three classes: DataType, Token,
abToken (Figure 3).

• DataType: The main data structure in class DataType
is a Vector storing a list of basic types' name, which is
used to show what data structure the token or place
holds. The data structure consists of an array of basic
types, such as string, integer, etc. For our tool, basic
types are limited to strings and integers for the
simplicity but are adequate for most of applications.
For the convenience of extension on basic types, we
introduce a new structure BasicType to data layer. The
structure BasicType (see Figure 4) includes a flag data
field "Kind" to indicate which type it is (in PIPE+, 0
represents integer, 1 represents string). Space is
allocated to both integer and string since it is

undecided before the “Kind” is defined. Further
extension on basic types needs to enhance the class
BasicType by allocating extra space and redefine
“Kind”.

Figure 3 Extensions on DataLayer for PIPE+

• Token: Class Token is added to the data layer to
maintain data value. The important field is a Vector
storing a list of instances of value with type of the
BasicType, see Figure 4. Token is a basic data storage
element in the places and its value is calculated by the
transitions. The simulation process is fetching data
value from the token’s BasicType and fill the
calculated result value to another token’s BasicType.

• Abstract Token: Since first-order logic covers
quantification, the whole collection of tokens in a place
need to be checked by transition condition expressions.
For example, if an expression includes “�x � X”, all
the tokens in “X” needs to be checked to see whether a
“x” exists, so the whole collection of tokens is fetched
while checking enabledness of a transition. The tokens
in this type of place are defined as a power set. A new
class abToken (abstract token) is added into the data
layer to store the power set. It has a field storing a list
of regular tokens with the same data type, so it also has
a data type to restrict the tokens data structure. We
flatten the nested power sets by duplicating some fields.
For example, in a library system, one user may borrow
a list of books, so that the database (power set) in
library system is {username, password,
books_borrowed{book1, book2,...} } is converted into
{username, password, book1}, {username, password,
book2}. This design sacrifices the space for the
convenience of implementation, which can be further
improved.

Figure 4 Structure of Class Token

As a result, the places in PIPE+ stores a list of regular
tokens or an abstract token that contains a collection of regular
tokens. Whether the connected transition can fetch a regular
token or an abstract token depends on the place is a power set
or not. The user can add, edit and delete tokens from places to
create a place marking.

In PIPE+, a place stores tokens by List container, the
place's capacity is built as unbounded (remember it has nothing
to do with the number of different tokens that may appear in a
particular place). However, in the discussion of [7], bounded
and unbounded places have the same expressive power. A
bounded place is preferable for the reason of visualization and
redundancy.

In PIPE+, copies of token are allowed to store in the same
place. Since whether the place needs to remove its copies of
token depends on what the model it is, this can be further
improved by supporting an option of copy remove.

D. Transition Conditions and Arc Annotations

Transition conditions are guards controlling the flowing of
the tokens. PIPE+ use first-order logic to define transition
condition formulas, which, syntactically, consists of variables
and logic operators. Variables in the formula are predicates that
can be instantiated by value from input tokens. Combined with
logic operators the formula can be calculated. Semantically, as
transition is a guard to control token flows, it has to check the
value of tokens from input places and formulate new tokens
conform to the output place type, the formula consists of two
parts: pre-condition and post-condition. However, in PIPE+,
the user is not supposed to separate the two conditions
explicitly, because the interpreter can differentiate them by the
type of variables.

In PIPE+, arc annotations are variables to assist transition
expression calculation by mapping token values to expression’s
predicate variables. Arc variables are restricted to be appeared
in the connected transition expression’s variables for the
mapping. Since a transition is connected by input and output
arcs and arcs are connected to places, the predicate variables in
the transition expressions are classed into input variables and
output variables. For example, in Figure 5, a and b are input
variables while c is output variable.

In a transition calculation process shown in Figure 5: In
step (1), each token in the connected place is firstly bounded to
the connected arc variable; as a pair, {variable, token}, they are

fetched into a symbol table of the transition (note the pair with
output variable’s token value is temporarily empty and to be
filled by the result of the expression calculation). In step (2),
the input variables in the transition expression can locate token
value through the pair’s arc variables by looking up symbol
table. In step (3), after transition expression calculation, the
output variables are assigned with result value and the symbol
table’s output variable pairs are filled by the value. In step (4),
the output pairs’ token are added to the connected output places
according the arc’s variables. For example, as c is on the output
arc, c’s token in symbol table [bob] is added to the output place.

Figure 5 An Enabled Transition Formula Calculation

Process

• Restricted First Order Logic Transition Formula
Expression: In PIPE+, it is called restricted because the
grammar we built for the tool has limitations. Since
each predicate variable has to be instantiated, the user
cannot use free variable that does not appear in the arc
annotation, otherwise the calculation result is
undetermined. Also, it does not support predefined
function, like f(n), since the meaning of the function
has to be declared beforehand, which is equivalent to
define its operations in a single logical sentence by
using the connecting operator “�”, which simplifies the
implementation of expression interpreter. However, the
restricted version of first order logic is still very
powerful, because it does support complex expressions,
such as:

�a � b
 � �c � C��c
1� � �
2�
 � �C� � C � �b� �

 �
a
1�, c
2��

. (1)

In (1), lower case letters represent regular tokens,
upper case represent power set; C’ by convention
represents output variables and also is a power set
(upper letters); it further indicates the clause is a post-
condition because output variables at the left side of
the equation means assignment; c[n] means the nth
element value in c’s data structure.

• Parser and Interpreter: Because logical formulas need
to be parsed and interpreted, we build a compiler with
a parser and an interpreter for the restricted first order
logic formula. The parser includes a scanner, which is
built by a lex file and generated by jflex 1.4.3 [16]. A
BNF grammar is built in cup file and generated by
leveraging the tool jcup v11 [17]. Since the transition

formula does not explicitly separate pre and post
conditions, but only pre-conditions need to be
calculated when checking whether the transition is
enabled to fire or not, the interpreter has to differentiate
pre and post conditions. A trick is found that in the
post-condition, it usually starts with an output variable
equals a subformula, for example, in (1),�C� � C �
�b� � �
a
1�, c
2��
 is a post-condition because C� is
output variable. Therefore in the interpreter, when
checking a clause with an "=" operator, the left hand
side of the "=" variable is checked. If it is input
variable, this clause is a pre-condition and the "=" is
interpreted as a logic operator equal, which results in a
Boolean true or false; on the other hand, if it is an
output variable, the clause becomes a post-condition
and the operator now is an assignment clause that
assign the result value of right hand side formula to the
left hand side output variable.

• Symbol Table: In PIPE+ each transition maintains a
temporary symbol table to facilitate the interpreter. It
does not use one big table for all the transitions,
because it may cause name conflict and is hard to
manage. The symbol table contains a list of elements
that are structured by a pair of key and object. The pair
of key and object is obtained from the transition's
connected arc annotation and place. The reason we
maintain the pair of key and object instead of key and
token is because besides regular token type, the key
may pair with a power set (abstract token type).
Moreover, the symbol table is initiated each time
before a logical formula is checked and cleared after
the firing process.

• Declarations: In the standard[1], it comprising
definitions of place types, typing of variables and
function definitions. In PIPE+, the declarations are
already in the modeling process by defining place data
types, transition condition formulas and arc annotations.

E. Extensions On GUI

The GUI package in PIPE mainly consists of a GUIFrame,
a GUIView, and some supporting classes. The GUIFrame is the
PIPE's graphical frame includes a menu, a toolbar and a
statusbar. The GUIView is the panel to draw Petri net graphical
elements. Since requirements and concepts for high level Petri
nets are token storage and flow, our modification to the PIPE's
GUI is focused on Petri net elements places, transitions and
arcs. The common procedure to extend PIPE’s GUI is adding
new selections on graphical elements’ property setting menu
for new features. In PIPE+, after modifying the gui.handler
package for each Petri net element class, the new selections are
shown in a popup menu by right clicking a Petri net element.
The places now have the choices of defining data type and
editing tokens; the transitions can contain logical formulas; the
arcs can be labeled by variable key. These new features are
triggered by additional selections on GUI and used through
customized panels or dialogs.

F. Simulator

The simulator not only needs to execute the net model
visually, but also has to ensure correctness, fairness and good
performance. In PIPE+, the high level Petri net simulator
designs as follows:

1) Graphical Simulation: Since in a low level Petri net,
tokens are just black dots flowing from one place to another
and the animation is visible to the user. In contrast, tokens in
high level Petri nets are complex structured data, and
especially when the number of tokens is large, which are
inappropriate to be displayed upon graphical net; otherwise the
graphical annotations are unreadable. Since the execution
procedure is invisible to a user, the result can only be checked
by looking into the contents of Places. In PIPE+, to view the
tokens in the Places, user can open the Place edit panel and the
value of tokens are displayed under the text area of Token
List. Besides, the firing history is retained from PIPE by
listing the fired transition name orderly and updated instantly
after a transition fires, thus the user clearly knows a transition
is fired.

2) Transition Occurrence Scheduling Algorithm: A
scheduler is needed to coordinate the simulator’s token flow
strategy efficiently. Since the performance of the simulator
mostly affected by the times of transition condition
calculation, the PIPE+ chooses the scheduling algorithm from
[9] to minimize the recalculation of transition condition
checking. The idea is to keep track of disabled transitions
discovered during the search of enabled transitions, and use
the locality principle, that is an occurring transition only
affects the marking on immediate neighboring places, and
hence the enabling of a limited set of neighbor transitions. For
the implementation, we maintain an unknown list and a
disabled list. All transitions initialized as unknowns will be
randomly picked and checked for enabling status. If the status
is disabled, the transition will be moved to disabled list. Upon
occurrence of a transition, we update the status of neighboring
transitions to the unknown list if they are in the disabled list.
The neighboring transitions can be found through occurred
transitions' output places. Therefore, the disabled transition
avoid recalculation if the tokens of its input places are not
changed.

3) Enabling a Single Transition: In the high level Petri net
concpets, tokens are meaningful data, when a selected
transition start to check its expression, the expression’s
variables are to be instantiated. Since a transition may connect
to a number of input places, where each place contains a list of
tokens, to see whether the transition is enabled or disabled, it
has to check all the possible combinations of instantiation
tokens from its input places. For example, if there are three
input places and each place has 3 tokens, the number of their
combinations is 3 � 3 � 3 � 27 . If one of the three input
places is a power set, no matter how many regular tokens
inside the abstract token, it only counts as one abstract token.
So the combinations reduces to 3 � 3 � 1 � 9 combinations.

4) An Summarization of the Complete Internal Simulation
Process:

a) All transitions in the net graph are initially stored in an
unknown list; a disabled list is initialized to be empty;

b) A transition is randomly selected from the unknown
list, and is checked for enabledness;

c) During the checking process of the selected transition,
all the connected arcs and places of the transition are found;

d) Combinations of tokens from the transition’s input
places are orderly choosen to fill in its symbol table. Since
symbols in symbol table are pairs of [key, object]. The keys
are from arcs label; the objects are regular tokens. If the input
place is a power set, the whole abstract token is sent as an
object, otherwise only its first token is sent and the remaining
tokens are still in place. For the symbol's key from output arcs,
the object is empty because it is to be filled during transition
firing action (after interpreting the post condition of transition
formula);

e) The formula expression in the transition is checked
utilizing a parser. A Boolean value is returned: if it is true, the
transition is enabled and is fired immediately; if it is false, the
transition is not enabled with the current input tokens, the
tokens in symbol table will go back to the input places; if all
the combination of input tokens cannot enable the transition,
the transition is moved into a disabled list Both checking and
firing a transition formula needs to parse and interpret the
formula; however, the checking process only affects a
formula's pre-condition while the firing process only affects a
formula's post-condition.

f) After firing the transition, the tokens in the symbol

table are sent to the output places according to the variables of
arcs annotation and added to the tail of output places' token
list. Since it changes the place marking of the output places,
according to the scheduler algorithm’s locality principle, if the
dependent transitions are in the disabled list, it can now be
moved back to the unknown list. Then go back to step b).

g) In step b), when unknown list is empty, the simulation
process ended.

V. SOME ISSUES OF PIPE+

A. Limitations of PIPE+

1) Limited Basic Types: As we mentioned above, currently,
the place data type of the PIPE+ only supports two basic types,
string and integer. Since PIPE+ using a structure to define
basic types, the structure can be extended to accommodate
more types.

2) Flat Tokens: For the convinience of implementation,
the place data type of the PIPE+ does not support nested
powerset, such as {Bob, {book1, book2}}, but instead, it
stores two flat tokens {Bob, book1}, {Bob, book2}.

3) Restricted First-order Logic for Transition Formula: A
new grammar is built for the convenience of interpretation and
to avoid ambiguity.

4) No True Concurrency: The PIPE+ only supports
interleaving semantics. Besides, it does not support timed Petri
nets.

5) Analysis Module: Lack of an integrated tool to analyze
the properties of a net model;

6) Bugs and Errors: Since this is the first version of the

Figure 6 Screenshot of Mondex in PIPE+

PIPE+ and our main purpose is to introduce the new tool, bugs
are unavoidable.

B. Testing the PIPE+

The most important part of testing is the transition
condition formula. As the new parser and the interpreter were
built for the restricted first-order logic formula, its correctness
has to be assured. Our test cases are designed mainly on
complex formulas including quantifier, relation expressions,
arithmetic expressions and set expressions.

C. Using the PIPE+

The PIPE+ has been applied to a Mondex[8] smart card
system, which is an electronic purse payment system based on
smart card technology. The model for a concrete transaction
between two purses has eight operations (including abort) and
four statuses, and we translated into PIPE+ model with ten
transitions and four places. Figure 6 is a screenshot of Mondex
in PIPE+, in which the simulation of a transition firing
sequence is shown at the left bottom of the interface’s frame.
After no more transition is available to fire, the result of the
simulation is a final marking that can be read by opening the
places, msg_out and ConPurse, to view contents which are
tokens’ data.

VI. CONCLUSIONS

In this paper, we present a tool PIPE+ supporting high level
Petri nets editing and simulation. We believe PIPE+ can be a
valuable tool for concurrent and distributed system modeling
and simulation. PIPE+ is built upon an open source tool PIPE
for low level Petri nets. We illustrated the process of
extending PIPE, and discussed our design strategies, which
provide helpful insights for others to create Petri net tools suit
their own needs. Furthermore, PIPE+ is an open source tool
and thus is available for sharing and continuous enhancements
from worldwide research community.

Acknowledgements This work was partially supported by
NSF grants HRD-0833093.

REFERENCES

[1] High-level Petri Nets-Concepts, Definitions and Graphical Notation,
Version 4.7.1, 2000

[2] Pere Bonet, Catalina M. Llado, Ramon Puigjaner, “PIPE v2.5: a Petri
Net tool for performance modeling,” Proc. 23rd Latin American
Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October
2007

[3] Reisig, Wolfgang, “Petri nets: an introduction,” Springer-Verlag New
York, Inc.NY, 1985

[4] Tadao Murata, “Petri Nets: Properties, Analysis and Applications,”
Proceedings of IEEE, vol. 77 No.4, Chicago, IL, April 1988

[5] Petri Net Tool Database. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/db.html

[6] James Bloom, Clare Clark, Camilla Clifford, Alex Duncan, Haroun
Khan, Manos Papantoniou, “Platform Independent Petri-net Editor:
Final Report,” London, March 2003

[7] Carlos A. Heuser, Gernot Richter, “Constructs for Modeling Information
Systems with Petri Nets,” 13th International Conference on Application
and Theory of Petri Nets, 1992, Sheffield, UK

[8] Reng Zeng, Xudong He, “A Formal Specification of Mondex Using
SAM,” The Fourth IEEE International Symposium on Service-Oriented
System Engineering, 2008

[9] Kjeld H. Mortensen, “Efficient Data-Structures and Algorithms for a
Coloured Petri Nets Simulator,” 3rd Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, Aarhus University,
August 2001

[10] Didier Buchs, Steve Hostettler, Alexis Marechal, and Matteo Risoldi,
“AlPiNA: An Algebraic Petri Net Analyzer,” J. Esparza and R.
Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 349–352, 2010

[11] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S.
Stissing, M. Westergaard, S. Christensen, and K. Jensen, “CPN Tools
for Editing, Simulating, and Analysing Coloured Petri Nets,” Proc. of
24th International Conference on Applications and Theory of Petri Nets ,
2003

[12] R. Milner, M. Tofte, R. Harper, and D. MacQueen, “The definition of
Standard ML,” MIT Press, Cambridge, MA, 1997

[13] CPN ML Reference,
http://www.daimi.au.dk/designCPN/man/Reference/Reference.Main3.C
PN.ML.pdf

[14] Andrews, Peter, “An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof,” 2nd ed. Kluwer Academic
Publishers, 2002.

[15] X. He and T. Murata: “High-Level Petri Nets – Extensions, Analysis,
and Applications”, Electrical Engineering Handbook (ed. Wai-Kai
Chen), Elsevier Academic Press, 2005, 459-476.

[16] JFlex Lexical Analyzer Generator. http://jflex.de/index.html

[17] JCUP Parser Generator. http://www2.cs.tum.edu/projects/cup/

